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Abstract

The 2MW Spallation Neutron Source (SNS) will have a
D.C. beam current of 40 A at extraction, making it one of
the worlds most intense accelerators. Coherent instabilities
are a major concern and efforts to predict beam behavior
are described.

1 INTRODUCTION

For 2 MW operation the SNS will accumulate2 × 1014,
1 GeV protons over 1 ms via charge exchange injection.
The machine circumference is 220 m with a transition en-
ergy of γt = 4.9 and betatron tunes around 5.8[1]. The
baseline design calls for natural chromaticities∼ −1, but
chromatic control is likely in the final design. The machine
impedance below 200 MHz has been characterized[2, 3],
and measurements of the extraction kicker impedance are
in progress.

2 LONGITUDINAL INSTABILITIES

Two methods have been used to characterize longitudinal
stability in the SNS. First assume a coasting beam with a
rectangular energy distribution and do first order pertuba-
tion theory on the Vlasov equation with

I = I0 + I1 exp(in(θ − ω0t) − iΩt).

The dispersion relation is given by,

Ω2

ω2
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2 = v̂2 + i
qI0η
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n

(1)

whereη = −0.193 is the frequency slip factor,E0 =
γmc2, q is the proton charge, and̂v = |η|max(E −
E0)/E0β

2 ≈ 1 × 10−3 . With I0 = 40A the terms on
the right had side are equal forZ‖/n = i650Ω. The space
charge impedance isZ‖/n = i150Ω and dominates the
magnitude of the impedance. Taking the square root of
eq(1) and assuming the second term is small compared to
the first yields

Im(Ω) ≈ ω0

2v̂
eI0η

2πE0β
2Re(Z‖). (2)

When all objects other than the extraction kicker are in-
cluded in the impedance budget the growth rate of the most
unstable mode below 700 MHz is<∼2/ms, which is be-
nign. Near the cutoff frequency for transverse magnetic
microwave propagation≈ 1 GHz, codes such as ABCI [6]
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predict strong, narrow, resonant impedances. These will be
considered in the future.

Instabilities of the sort predicted by eq (1) and (2) are
rare or nonexistent below transition. The reason can be
inferred from a simple bunched beam model. Assume a
“brick wall” barrier bucket rf system. The bunch has length
τb (radians) and peak currentI0. The particles undergo per-
fect reflection at the edges of the bunch and the impedance
is given byZ = R − iωL. Use the machine azimuthθ as
the time-like variable. Letτ = ω0t − θ andv = dτ/dθ
be the dynamical variables. Assume the unperturbed phase
space density is given by

Ψ0(τ, v) =
1

2v̂τb

for 0 < τ < τb and|v| < v̂, and zero otherwise. This ne-
glects the effect ofR on the unperturbed distribution. As-
sume a solution to the Vlasov equation of the form

Ψ(τ, v, θ) = Ψ0(τ, v) + e− iQθΨ1(τ, v).

The pertubation satisfies

−iQΨ1 + v
∂Ψ1

∂τ
= F1(τ) (δ(v − v̂) − δ(v + v̂))

where

Ψ1(τ, v) = Ψ+(τ)δ(v − v̂) + Ψ−(τ)δ(v + v̂) (3)

F1(τ) = κ

(
R+ ω0L

d

dτ

)
(Ψ+(τ) + Ψ−(τ)) (4)

and

κ =
−ηqI0

4πv̂β2E0

The equations forΨ+(τ) andΨ−(τ) are first order with
constant coefficients. To solve these equations letU−iV =
κ(R − iω0L), S(τ) = Ψ+(τ) + Ψ−(τ), andD(τ) =
Ψ+(τ) − Ψ−(τ). Then

−iQS + v̂
dD

dτ
= 0, (5)

−iQD+ (v̂ − 2V )
dS

dτ
= 2US. (6)

For perfect reflection atτ = 0 andτ = τb the boundary
conditions areD(0) = D(τb) = 0, so

D(τ) = exp(λ+τ) − exp(λ−τ).

Equations (5) and (6) give

λ± =
U

v̂ − 2V
±
√

U2

(v̂ − 2V )2
− Q2

v̂(v̂ − 2V )
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The boundary condition atτb givesλ+ −λ− = 2πik/τb
with k 6= 0 an integer. Solving forΩ = ω0Q gives

Ω2 = ω2
0 v̂(v̂ − 2V )

{
k2π2

τ2
b

+
U2

(v̂ − 2V )2

}
(7)

The right hand side of (7) is positive as long asv̂ > 2V or

− qI0η

2πE0β
2ω0L < v̂2.

This is very different from the coasting beam result. For
the SNS space charge dominates(L < 0) and we are below
transitionη < 0 so no amount of resistance makes the beam
unstable. For a resonator impedance there are 4 coupled
ODEs and numerical techniques apply [5]. Figure 1 shows
the eigentunes for a wake potential given by

W (τ) = W0(1 − 10πτ/τb)e
− 10πτ/τb ,

corresponding to a critically damped resonantor with a fre-
quency of8 MHz in SNS. The tunes are in units of2τb/v̂
and are plotted versus the tune shift obtained by assuming
D(τ) = sin(πτ/τb). The system appears stable forall val-
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Figure 1: Exact coherent tunes versus tune shift for the
dipole mode in the weak coupling approximation

ues ofW0, not just those shown. This too is a curious result
and independent confirmation would be appreciated.

For long range wakefields the residual fields from pre-
vious turns must be included in the equations of motion.
Studies in this direction continue and growth rates of order
the synchrotron frequency are expected. Since the entire
SNS cycle is about half a synchrotron period no serious in-
stabilities are expected.

The final type of longitudinal stability is related to the rf
system. With large beam current the coupling between the
beam, cavity and power amplifier is a major consideration
in rf design. For SNS we have simulated the effects of beam
loading with realistic amplifier passbands and delays. As
of now the delays are large enough to keep the feedforward
and feedback amplifiers outside the tunnel. The amplifiers
will go into the tunnel if needed.

3 TRANSVERSE INSTABILITIES

Both coasting and bunched beam approximations have
been used to study transverse stability. The space charge
tune shift reaches≈ 0.2 while ∆p/p <∼ 0.01. For a coast-
ing beam with a parabolic energy distribution a normalized
chromaticity≈ −16 is needed to Landau damp low fre-
quency oscillations[7]. Such a chromaticity would have a
strong impact on dynamic aperture so no Landau damping
due to chromaticity will be assumed. A similar statement
applies to octupoles. Landau damping due to frequency slip
becomes effective for mode numbersn>∼4×0.2/v̂ ≈ 800.
This frequency is above cutoff for transverse electric mi-
crowave propagation≈ 800 MHz where the transverse
impedance may have narrow resonances. Therefore, a cold
coasting beam dispersion relation is appropriate and the
growth rate is[7]

Im(Ω) =
qcIpeakRe(Z⊥(n−Qβ))

4πE0Qβ

= 2.12IAZKs−1,

(8)
whereQβ ≈ 5.8, IA is the current in amps,ZK is the trans-
verse impedance in kΩ/m, andn > 0 for instability. For
the narrow band resistive wall growth rateIA = 40 and
Im(Ω) = 1.1/ms, which is benign. The stripline beam
position monitors (BPMs) have a transverse resistance of
25kΩ/m near 100 MHz and a large bandwidth. Taking
IA = 100 givesIm(Ω) = 5.3/ms. This is a large growth
rate, but the wide bandwidth of the BPM impedance re-
quires that the finite bunch length be taken into account.

Bunched beam stability calculations have been done as-
suming an air bag longitudinal distribution in a square well
[4, 5]. The impedance budget includes the resistive wall,
BPMs, extraction kicker, bellows, and transitions. The high
frequency narrow band resonances associated with the lat-
ter were ignored. The extraction kicker impedance was
modeled using a slightly modified version of the Nassib-
ian Sacherer formula[8].

Z⊥(ω) =
−iNcL
g2

Zg/L

Zg/L− iω
,

whereN is the number of kicker modules,L is the induc-
tance per module,g is the aperture in the kick direction,
andZg is the generator impedance of the pulse forming
network. This formula differs from [8] in thatZ⊥ → 0 as
ω → ∞ here. Both have identical expressions forRe(Z⊥).

Table 1 shows the growth rate of the most unstable mode
as a function of space charge tune shift and kicker generator
impedance. The growth rates are for2 × 1014 protons and
should be multiplied by0.5ms to obtain the number of e-
folding times in the cycle. In the worst case there are2.5
e-folding times in the SNS cycle. An initial offset of1mm
yields1.2cm at extraction.

4 ELECTRON PROTON INSTABILITY

Very fast, high frequency, transverse instabilities have been
observed in the Los Alamos PSR and the AGS Booster.

1612

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999



Table 1: Transverse bunched beam growth rates as a
function of space charge tune shift and kicker generator
impedance.

∆Qsc Zg = ∞ Zg = 500Ω Zg = 50Ω Zg = 5Ω
1 103s−1 103s−1 103s−1 103s−1

0.00 1.27 1.41 2.01 3.85
0.05 1.37 1.52 4.58 3.69
0.10 1.37 3.14 4.87 3.70
0.15 1.37 4.27 4.99 3.70
0.20 1.37 4.99 5.05 3.70

The e-folding times (∼ 10 turns) require a transverse re-
sistance or order1MΩ/m which is significantly larger than
can be accounted for by the lattice. Additionally, the fre-
quency of the instability depends strongly on beam param-
eters like betatron frequencyωβ , which requires a broad
band impedance. An alternate driving mechanism is the
electrostatic interaction between the proton beam and elec-
trons within the beam pipe[9, 10, 11, 12].

Assume a coasting proton beam of radiusa with vertical
offset

Yp(θ, t) = Ŷp exp[ i (nθ − ω0t) + i(ωβ + δωβ)t]

whereθ is the machine azimuth andδωβ is the betatron
frequency shift. Let an electron cloud be trapped by the
beam with vertical offset

Ye(θ, t) = Ŷe exp[inθ − i(ωe + δωe)t]

where

ωe =

√
eIZ0

2πβmea
2

is the incoherent transverse frequency for electrons trapped
within the proton beam. Of courseδωe = −δωβ + (nω0 −
ωβ − ωe). The equations of motion are given by

Ÿp = −ω2
βYp + ω2

p(Ye − Yp) (9)

Ÿe = ω2
e(Yp − Ye) (10)

where
ω2

p = f
me

γmp
ω2

e

with f being the fractional neutralization due to the elec-
trons. Assumingδωβ � ωβ andδωe � ωe

2iωβδωβYp = ω2
pYe, −2iωeδωeYe = ω2

eYp

Solving forδωβ yields

δωβ =
∆ω
2

±

√√√√ ∆ω
2

)2

− ω2
pωe

4ωβ

where∆ω = nω0 − ωβ − ωe. For unstable conditions the
ratio of proton to electron amplitudes is given by∣∣∣∣∣ Ŷp

Ŷe

∣∣∣∣∣ = ωp√
ωeωβ

Since|∆ω| ≤ ω0/2 for somen the beam will be unsta-
ble if ω2

p ≥ ω2
0ωβ/4ωe which givesŶp ∼ ω0Ŷe/ωe � Ŷe.

Electrons withŶe = b (the pipe radius) will be created
by the familiar slow loss mechanisms. Asf increases the
beam goes unstable and the electron amplitudes grow. An
electron striking the beam pipe leads to secondary emis-
sion which can cause an electron cascade and beam loss. A
key parameter is the kinetic energy the electron has when
it strikes the wall. This is easily estimated by assuming the
electron grazes the wall on one oscillation and hits it on the
next. If only one side of the vacuum chamber is involved
the electron velocity on impact is given by

ve = b
√

4πωeωI

(
1 +O(

√
ωI/ωe)

)
whereωI = Im(δωe). Assuming∆ω = 0, the electron
kinetic energy when striking the wall is

KEe = πme(ωeb)2
√
fme

γmp

ωe

ωβ
. (11)

Table 2 summarizes the observations of the instability in
the AGS Booster and PSR. Forf = 1% the electrons hit
the wall with an energy greater than100eV, which results in
a secondary emission coefficient greater than one for most
metals. Withf = 1 both machines have|Ŷp/Ŷe| < 0.1 so
strong multipactoring is required for fast beam loss.

Table 2: Coasting beam instability parameters
machine ωe/2π ωβ/2π b γ KEe/

√
f

MHz MHz cm 1 keV
PSR 100 6.0 5 1.85 1.24

Booster 80 4.1 6 1.21 1.52
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